From Cloud to |oT Device Authenticity under
Kubernetes Management

George Kornaros, Dimitris Bakoyiannis, Othon Tomoutzoglou and Marcello Coppola

Intelligent Systems and Computer Architecture Lab — ISCA

Hellenic Mediterranean University, Heraklion, Crete, GR

The 11th International Conference on Internet of Things: Systems, Management and Security (IOTSMS 2024)
Malmo, Sweden. September 2-5, 2024

Outline

* Challenges and background

* Services security challenges

* SPIFFE/SPIRE technology overview

* FLUIDOS — KubeEdge and SPIFFE integration
* Demonstration

* Conclusion

Billion of Embedded Devices

Secure anchors for Mobiles,
Industrial, Communications, loT &
Edge nodes

Industrial & loT Communication with loT devices
* Trust provisioning
* Secure element communication

ADAS & Autonomous Vehicles,
Cellular-V2X, connected cars

Digital signatures
e Secure boot, Industrial & loT Firmware integrity for loT devices

* Over-the-air updates, Firmware authentication, smart car access

Exploding Cross-service Communication

Over 100,000 GitHub repos have leaked API
or cryptographic keys

* Increased attack surface & risk of leakage across untrusted networks

* Long-lived service credentials exist across applications, repositories, platforms,
and tools, making them ripe for theft.

Workloads Security Risks

* Misconfigurations: Improperly configured Kubernetes components can
expose the cluster to attacks or unauthorized access.

* Vulnerable container images: Deploying containers with known
vulnerabilities can lead to security breaches.

* Insecure communication: Lack of encryption and mutual authentication
between services can result in data leaks and man-in-the-middle attacks.

* Insider threats: Malicious or negligent actions by employees or contractors
can compromise the security of the container platform.

* Supply chain attacks: Infiltration of malicious code or compromised
dependencies during the software development lifecycle can lead to
compromised applications and infrastructure.

Authentication for Zero-Trust Security Model

Cantes

_ _ Service
Service Service

_ Service
Service

Partner

__

__

Service

Service

Managed DB

~o -

Perimeter Security hard to defend when adding: Services, Clouds, Regions

Clouds and Containers Adopting Zero Trust

Perimeter - based Zero Trust

IH

Attempts to build a trusted “wal Assumes “bad guys” are everywhere
e Relies on IP addresses or physical locations e Uses cryptographic identities for authenticating
e Difficult to implement for today’s dynamic environments every system/user
e Enables universal enforcement across hybrid
infrastructures

SPIFFE Ensures Zero-Trust Security

SaaS Provider

——————————————————

el
Pre
-

Service | . b
Partner h e

CloudY P
Y

Service «~ Service © |

Managed DB

~o -

Guarantee each workload/service will get its own SERVICE identity
* unique

e secure
e provable

Datacenter , SN W

===

-

-
-
-
-
-
-
-
-
-
P
-

-
.
-
-
-
Pig
-

ldentity
Manager-
Provider

SPIFFE

(Secure Production Identity Framework for Everyone)

* Challenge: have an identity, rotating secrets and automated bootstrap
for trust and make it available for other systems to authenticate

Custom granularity
Can be fine grained as
desired. Eg could be a
specific process on a
node.

Platform Agnostic

Not specific to any
platform,

doesn’t assume eg k8s.

©

Elastic

A workload can span
multiple nodes, each with
unique IP addresses

Isolated

Isolated from other
workloads such that a
malicious workload could not
steal the credentials of
another

SPIRE Server-Agent Startup

SFPIRE Server Server generates trust
Startup bundle

Server generates a Reqgistration API
self-signed comes online
certificate

Agent startup

Agent performs
node attestation

10

SPIFFE Overview

i

O

Spire Server

Workload

Registration API |

Identity
| Registry | |

Node Attestor

AR

[l S

| Node API m

Workload Agent F:

O

.

Node Attestor

SPIRE Node Agent

QO

Workload API —

u Workload Attestor |

T

Registration APl is called by either an administrator or a third party
application to populate the identity registry with the required
SPIFFE IDs and relevant selectors.

Node agent get authenticated with the SPIRE server using a pre-
established cryptographic key pair or based in the infrastructure
provider. For example in the case of AWS EC2, node agent will
submit the node’s Instance Identification Document(lID) issued by
AWS.

Node attestor in the SPIRE server validates the provided
identification document based on the used mechanism. If the AWS
IID is used, the relevant attestor will validate it with AWS settings.
Upon successful validation SPIRE server sends back a set of SPIFFE
IDs that can be issued to the node along with their process
selector policies.

When workload start to run in the node, it first make a call to the
node agent asking ‘who am |?’,

Based on the process selectors node agent received in the
previous step, and using the workload attestors, agent decides on
the SPIFFE ID to be given to workload. It generates a key pair
based on that and sends the CSR(Certificate Signing Request) to
the SPIRE server.

SPIRE server responds to the node agent with the signed SVID for
the workload along with the trust bundles, indicating which other
loads can be trusted by this workload.

Upon receiving the response from SPIRE server, node agent,
handover the received SVID, trust bundles the generated private
key to the workload. This private key never leave the node it’s

workload belongs to. T

Example: Azure AD workload identity
federation with SPIFFE and SPIRE

Azure AD tokens using SPIFFE JWT

éE Trust on Azure AD App
Spireserver | 0IDC - R

discovery
URL

Subject: <SpiffelD>

Kubernetes Cluster

Spire agent Spire agent
pod pod

e SPIFFE JWT token: {sub: <SpiffelD>, aud: Azure AD, iss: Spire_OIDC_URL} e
a AAD token: {sub: <appid>, aud: vault, graph or other}

® e

N
O (4

Setup SPIRE service with OIDC
federation & trust on AAD App:
{sub: <spiffelD>, issuer: <Spire>}

Service uses workload API to
request SPIFFE JWT from Spire
agent

Send SPIFFE JWT, and request AAD
token for the specific <appid>, for
<aud: vault, graph or others>

Azure AD checks trust on app,
validates incoming token

Issue Azure AD token: {sub:
<appid>, aud: requested audience}

Use Azure AD token to access
resources

12

SPIFFE in loT-Edge Architecture (FLUIDOS) ¢

FLUIDOS
CloudCore = Soire
DeviceController T _Server * Cloudcore-EdgeCore
router [—— [App(y] ' : monitoring resource
—_- Spire :
GOUdTHUB E Agent | changes
4 .
EdgeCore (EdgeNode) . I\/cljetada? tr?ﬁ?c mcI(Ldees
EdgeHUB & edge node status an
P ——— | | application status
[MeoMenmeer Devieewin . * Extended Kubernetes
Ed;d Eveftsus H Custom Resource
ol ! = Spire Definitions (CRDs) to
P “"QWIB“’"” / = manage sensor data traffic
— Mapper @ / ,,':
Gateway @ ,/I
N S
—— Certificates provisioning i Device -
N (7 &
---- Out-of-band certificate prov. JOSESESO
-------- Node Attestation @ @ 13

BLE zigbee Thread

Scaling service for Energy Efficiency, Accuracy, QoS, (e.g.
geographic coverage (# sensors), sensing rate, Al-assisted

preprocessing, fusing, collaborative device data)

CloudCore

DeviceController

~_Environmental,
contextual
triggering

FLUIDOS CloudCore

DeviceController

CloudCore

DeviceController

Router Router

Router
CloudHUB

CloudHUB CloudHUB

EdgeCore (EdgeNode) EdgeCore EdgeCore
EdgeHUB (EdgeNode) (EdgeNode)
________________________ s
= . i
—%— MetaManager loT Device Manager DeviceTwin |
3 3
Edged EventBus I I
Z,Znﬁffamp?tﬁ MQTT Broker MQTT Broker MQTT Broker

Containerized
Applications

Devices Devices i i Devices | & Devices : & Micro Edge
D) g 1S @ 13 @ 1S
Dy 7w N (77 e (7 =z 7 W el _
NB-IoT' L”S i g ‘) @ K ‘) N ‘) S Extended module
“ v LORa C 3 G? 3
LTE-iy} = BLE zgbee Thread g zig%e Thread g zig%e Thread New mloltliule

0T Device Identity Provisioning

Cloud Node

=ﬁ

[—]
CA Root Cert

B—

Config file

Edge Node

2—

Config file

/’

Upstream Authority
Plugin (Disk)

::— Spire Server

Server Node Attestor
X509 Plugin

|

Agent Node Attestor
X509 Plugin

::— Spire Agent

Workload Attestor
Plugin (API1)

Y

—— ol Spiffe — gl\C;ispiffe lib =
Devicﬁcm — Helper apper
\~ I
~~~
bl T STM32
== Microcontroller

)
—
CLI

(w

<
Leaf Cert

BLE 5.0
Module

SMP

=

MCU

STWINBX1
BT LED

15



Secure Device Management

Trustzone

Secure

Un-privileged

:
;
£

Non secure

—

Application

Trusted app 1

Cryptography

Trusted storage

Attestation

My e T T T T P

Real-time OS5 Secure Manager Core

|..---------__________

STIiRoT

Secumumﬂg&r EIIIIIIII_:JIIIIIIIIE
e = Target \’ .
:l psnn:eﬁed 555[?3.

Secure Services :

*  Firmware update rsaap)
*  Trusted Storage

* Cryptography

+ Attestation

Secure OS core

2nd stage bootloader wpdatable)
1st stage bootloader



Securing BT STWINBX1 — Mapper Communication

BLE Stack and Secure Communication:
* BLE stack integrated - in the GO BLE Library and the BLE Module

*  BLE stack integrates the Secure Manager (SMP) to enable Secure Connections
* Mapper and BLE Module use Diffie-Hellman handshake to secure connection
* Diffie-Hellman requires certificates in both sides provided by Spire Agent

1. Mapper:

Attest to the Spire Agent and receive certificate

Enable BLE Secure Connections (through SMP)

Provide the certificate to the SMP to start Diffie-Hellman secure pairing

2. Spiffe Helper:

Run attestation on behalf of the BT LED

Receive certificate on behalf of the BT LED

Out-of-band distribution of the certificate to the BT LED

3. STWINBX1 MCU:
Configure the BLE Module to enable BLE Secure Connections (over SPI)
Provide the BT LED certificate to the BLE Module (over SPI)

Spire certificate distribution/attestation
--------- Out-of-band certificate distribution

Diffie-Hellman

“—-Spire Agent

GO BLE
Library

SMpP

BLE 5.0
Module

SMp

$ s

MCU

STWINBX1
BT LED

ﬁ

Spiffe
Helper

Attribute Protocol (ATT)

f—'«

Link Laver (LL)

)

17



Secure Device Bootstrapping

* Threats
* Device cloning or

I d cortifi * Device integrity or
1. Read certificate data corruption

S

2. Parse & verify
STSAFE A110 public X509 public key certificate

 keycertificate )

* Countermeasures

e EAL5+ CC certified
secure MCU

* Secure operating
system, secure
handling of
cryptographic keys

* Customer secure
keys and certificates
loading at ST in a
security certified
environment

a

3. Generate
challenge

4. Generate signature

v

[ 5. Verify signature ]

A

|
|
|
|
|
|
|
|
: Signature
|
|
|
|
|
|
|
1

18



Mapper ldentity Provisioning

Spire

— Server

Time
«-------------

Perform node attestation, to prove to the
server the identity of the node it is running on

wn
©

ire

]
—+

Issue a SPIFFE ID to the agent, representing the
identity of the agent itself

Contact the server (using its SPIFFE ID as its TLS client
certificate) to obtain the registration entries it is authorized fo»r

v

<

>
«------------- U{'g

Mapper
Workload

Call the Workload API to request a SPIFFE ID (cert)

A

Runs workload attestation to verify the
workload and returns the SPIFFE ID (cert)

«-------------

19



Certificate Distribution to Mapper

a5 kcloud@kcloud: ~ 197x12

Registering the Mapper workload to the Spire Server

kcloud@kcloud: ~ 197x12

Spire
e3 Server

lines 318-328/328 (END) i

kedge@kedge: ~ 197x13

Starting the Spire Agent

kedge@kedge: ~ 197x13

Attempting to attest the BLE Mapper to the Spire Agent

Attestation failed because the Mapper is not registered to the Spire Server ]
Re-attempting to attest the BLE Mapper to the Spire Agent

Mapper workload successfully attested and received X509 certificate
Mapper continues normal operation pairing with the BLE device and receiving data




Conclusions

* SPIFFE identity management and mTLS based connectivity for trusting
Sensor-generated traffic flows in a the Kubernetes-managed cloud-edge
setup

* SPIRE’s plugin architecture enables diverse workload attestation options
beyond the Kubernetes namespace and service account attestation (e.g.,
offered by Istio)

* Holistic Identity management in loT-based environment

* SPIFFE and the service mesh ecosystem are the technology | wish the
virtualization, networking, and security vendors had built 5-10 years ago...

21



Thank you for your attention!

EU-H2020 FLUIDQOS W
https://www.fluidos.eu/

FLUIDOS

Intelligent Systems and Computer Architecture Lab
https://isca.hmu.gr

George Kornaros
[kornaros@hmu.gr]

22

15-Sep-24 ISCALab/HMU, Sep 4, 2024, Malme, Sweden


https://isca.hmu.gr/

