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Abstract—The proliferation of headless IP devices has posed
serious security issues. These gadgets, which include sensors,
smart meters, and industrial controllers, frequently lack built-
in security protections and are susceptible to cyber attacks.
Understanding these risks and establishing effective management
techniques is vital for safeguarding critical infrastructure and
data. Many IoT devices lack suitable authentication measures,
leaving them vulnerable to unwanted access, particularly when
the Kubernetes management framework is used at the edge. To
connect to the network, headless IoT devices need to re-key and
validate their credentials. This requires easy scalability and a
trusted platform module (TPM) to build a chain of trust and
protect all credentials. To maintain data security in Internet of
Things environments, we provide a totally trusted infrastructure
utilizing the SPIFFE/SPIRE framework that can ensure that,
additionally to authentic workloads, only verified, trusted IoT
devices may participate in data transmission.

Index Terms—zero-trust, IoT-Edge identity management, work-
load authentication, SPIFFE/SPIRE unique identity

I. INTRODUCTION

Expanded edge computing infrastructure and geo-distributed

installation improve data governance and performance, but

they also bring up new security and privacy issues [1]. While

the services and functionalities provided by edge and cloud

computing are similar, the logical components of an edge

computing stack – such as device hardware, firmware and

system, network and communication, cloud, and edge stack

(like Kubedge [2]) – have some distinct features. Edge devices

are less capable of processing computation intensive tasks and

have less resilient security measures. Furthermore, because

many edge devices are connected to one another, a single

intrusion may have a greater effect if the attack spreads to

other devices. Extreme issues arise from the heterogeneity

of devices, which is caused by completely distinct hardware

and software stacks. The risk of widespread and successful

exploitation becomes even greater by the heterogeneous and

proprietary nature of hardware and firmware in edge comput-

ing. Although there has been significant research on zero-trust

architectures [3] on managing cryptographic keys and digital

certificates at the device level and on lightweight quantum-

resilient security techniques [4], end-to-end authentication and

authorization across cloud, leaf edge, and Internet of Things

(IoT) devices is not fully covered [5] [6] [7].

Conventional cybersecurity depends on secure network

perimeters (through employing firewalls and VPNs) and pre-

sumes that everything within is trustworthy. Upon breach,

this “inner circle of entities” becomes susceptible to lateral

expansion and insider attacks. It has become more challenging

to identify a service based only on its location (such as its IP

address or subnet) due to the quickly gaining popularity of

distributed system architectures that break down functionality

into microservices, use containers for portability, orchestrate

containers with Kubernetes, and move workloads to the cloud.

Moreover, end-to-end identification remains an open issue,

particularly in Kubernetes setups with several clusters. One un-

resolved issue, for example, is how to guarantee a secure chain

of identification between the service’s launch and everything

it connects to and communicates with, both on and off cluster.

The solution to these challenges is the architecture offered by

SPIFFE (safe Production Identity architecture For Everyone)

[8], which obtains secure identities from a central server

in order to achieve Zero Trust [9] security for workloads.

The Zero Trust security model addresses the limitations of

perimeter-based approaches by defining the need for explicit

authentication controls enforced in each service.

A. Challenges in Kubernetes Security Management

In private and public cloud infrastructures, Kubernetes gen-

erates an auto-scaling, dynamic virtual architecture. We have

an ephemeral environment that differs greatly from standard

servers, with everything spinning up and down continuously

dependent on demand. In this scope, special security problems

arise. Traditional cloud security posture management (CSPM)

technologies, i.e., monitoring cloud-based systems and infras-

tructures for risks and misconfigurations, just aren’t made to

manage the subtleties of the Kubernetes control plane because

of how ephemeral and transitory Kubernetes is. They are

unable to keep up with workloads that change every minute,

network rules, or secret management.

Kubernetes today (as of v1.25) recommends that users use the

Pod security standards and Pod security admission controllers

[10]. These admission controllers provide flexibility and allow

for the configuration of a Pod’s security context. A Pod secu-

rity context can now be used to set various security parameters



such as access control and network policies. Kubernetes uses

the concept of ClusterRoles and Roles, which specify what

each user can perform in a cluster or an entire Kubernetes

namespace. You can use ClusterRoleBinding to apply a role

to all resources in the cluster, or RoleBinding to apply the role

to every resource in a namespace. Regarding the Kubernetes

API authentication, the primary access point for a Kubernetes

cluster is the Kubernetes API. Users and service roles access

it via the kubectl utility, direct REST API requests, or client

SDKs.

B. SPIFFE Goals

With the establishment of an open, unified workload identity

standard based on the idea of zero-trust, SPIFFE’s (Secure

Production Identity Framework for Everyone) objective is to

build a zero-trust, fully-identified data center network. It is

possible for SPIRE (SPIFFE Runtime Environment) to regu-

larly cycle secret keys and X.509 SVID (SPIFFE Verifiable

Identity Document) certificates. Workload certificates can be

dynamically provisioned by SPIRE based on policies provided

by operators.

Workload identification is provided by SPIRE, independent of

the workload’s deployment location. DevSecOps1 may provide

more detailed identity based on elements beyond those used

by Kubernetes, including host machine, hardware, and node

characteristics, as well as environment metadata, including

cloud provider, region, and network configurations. Moreover,

federation across trust domains is enabled via SPIRE. DevSec-

Ops may utilize SPIRE, for instance, to securely authenticate

workloads from clusters with varying trustDomain values.

SPIRE can federate communication between trust domains by

establishing trust through the usage of trust bundles.

In this work, we argue that zero trust assesses all entities,

workloads, and IoT device properties collectively, rather than

protecting the network perimeter, and then permits or prohibits

these entities from connecting with the network or with one

another. This method works with any platform and in any

setting. In section II we present related trust enabling frame-

works. Next section III demonstrates our developed Spiffe-

based infrastructure for IoT-Edge environments, while section

IV presents our method for trusted IoT device provisioning

and finally, we conclude with section V.

II. RELATED WORK

In response to the growing attention that businesses are giving

to admission policies, Kyverno – a dynamic admission con-

troller that operates within a Kubernetes cluster – has surfaced

[11]. The Kubernetes API server sends HTTP callbacks for

verifying and altering admission webhooks to Kyverno, which

then applies matching policies to produce results that either

refuse requests or enforce admission policies.

1DevSecOps helps ensure that security is addressed as part of all
DevOps practices by integrating security practices and automatically
generating security and compliance artifacts throughout the process;
[https://csrc.nist.gov/Projects/devsecops]

Core Linux functionality is crucial to Kubernetes and the

technologies it interacts with. Among these is the Extended

Berkeley Packet Filter (eBPF), which is becoming more and

more used in tools for networking, security and auditing, and

tracing and monitoring. Falco, a Kubernetes runtime security

tool [12], and Cilium [13], which offers, protects, and monitors

network connection across container workloads, are two of the

several projects that use eBPF.

Using a layer seven service interconnect, Skupper leverages

namespaces in one or more Kube clusters to build a virtual

application network [14]. Without the need for VPNs or

unique firewall rules, it permits safe communication across

Kubernetes clusters. In a service network, every site has its

own private certificate authority (CA) and Skupper router.

Mutual TLS secures communication between sites, isolating

the service network from outside access and avoiding security

threats including malware infections, lateral assaults, and data

exfiltration.

A growing body of research is being done on ways to ensure

that critical applications can trust the functions they rely on

to ensure the desired behavior. For trust verification for the

Function as a Service (FaaS) model, proposals increase to

enable function invokers to confirm the reliability of functions

[15]. Alternative methods offer confidential computing for

container workloads by fusing the robust security assurances

of hardware-enforced Trusted Execution Environments (TEEs)

with the manageability and agility of ordinary containers [16].

A. Identity and Access Management (IAM)
There are different ways that prominent public cloud systems

support workload identification. To enable workloads to au-

thenticate to other Google Cloud services, for example, Google

Kubernetes Engine (GKE) leverages its Workload Identity
feature. Both Azure and AWS provide Managed Identities for

Azure resources and IAM roles for Amazon EC2, respectively,

with comparable features.

Users are restricted to the native services and environments of

each cloud provider, even if these cloud environments might

offer comprehensive IAM features. For example, AWS IAM

may control access to AWS services, but not to Azure or

SaaS application services. IAM complexity is not uncommon

even inside the same cloud environment. One example is the

federation between Amazon EKS (Elastic Kubernetes Service)

and AWS IAM. Using OpenID Connect (OIDC) for identity

federation, this integration enables EKS workloads to take on

an IAM role for gaining access to other AWS services using

a feature known as IAM Roles for Service Accounts (IRSA).

B. SPIFFE, SPIRE Preliminaries
Within the context of workload IAM, it is critical to under-

stand the differences between authorization, access rules, and

authentication. The main objective of workload IAM is to

create and enforce access policies, which act as a link between

the identity (authentication) and permissions (authorization)

of a client workload with regard to a server workload. Es-

tablishing trust across various resources and microservices in



the runtime environment depends on the issuing of workload

identities. The organization’s trust system may confirm that

only authorized entities are accessing resources by assigning

distinct identities to every task.

It’s notably hard to securely bootstrap identity and trust in

a distributed system, particularly at the lowest or starting

level when no pre-existing trust exists, which is known as the

“bottom turtle problem”. SPIFFE resolves this challenge of

initially establishing trusted identities by ensuring that services

can build trust and securely interact with each other from the

moment of deployment, even in settings like Kubernetes where

services are generated and terminated on a continuous basis.

Moreover, based on SPIFFE, organizations can gain from

smooth integration with platform-specific identity management

systems by utilizing a workload identity issuer that is indepen-

dent of the various runtime environments (e.g., Kubernetes,

Azure, Google Cloud). The automation of credential mainte-

nance and rotation for each task is provided by the workload

identity issuer. By doing this, the danger of credential theft

or misuse is reduced and credentials are consistently updated.

By relieving administrators of the tedious chore of rotating

credentials by hand, automated credential management also

lessens their workload.

III. IOT EDGE ARCHITECTURE

Given the rapid adoption of KubeEdge in cloud-edge syn-

ergy in industries, transportation, energy, manufacturing, and

smart cities, security has become increasingly important to

the KubeEdge community. The integration of zero trust and

compliance in workload identity management and resources

identity management, such as IoT devices, plays a crucial

role in the kubernetes architectural framework achieved in

KubeEdge, consolidating the countermeasures proposed in [2].

SPIFFE and SPIRE can ensure that only verified edge nodes

can participate in data transmission, which is essential for

maintaining data security industrial IoT setups. Furthermore,

For each service communication, rotation policies may be

set and short-lived certificates are created. For the setup and

maintenance of certificate rotation, there is no requirement

for specialized agents or dependency on certain orchestrators.

Automated deployment of non-root Certificate Authority (CA)

certificate hierarchical architectures: Edge Spire servers have

the option to be set up such that no root CA chain is shared

with downstream nodes or workloads.

A. Edge Architecture Overview

Edge architecture integrating Leaf Edge Devices (LEDs), as

figure 1 shows, consists of several components that work

together to enable the deployment and management of con-

tainerized applications on edge devices, as well as the sharing

and grouping of IoT resources among these applications.

By extending KubeEdge architecture, Figure 1 represents

the trusted architecture for managing IoT edge devices. The

main cloud-side components interact with EdgeCore com-

ponent via Kubernetes key value store, usually etcd, using

Fig. 1. Edge architecture integrating IAM framework

the Kubernetes API to manage devices and data in a cloud

native way. Specifically, the DeviceController is the cloud

component responsible for device management. By using the

Kubernetes Custom Resource Definitions (CRDs), it describes

device metadata/status and synchronizes these device updates

between edge and cloud. The CloudHub component directly

interacts with the edge counterpart and supports both web-

socket based connection as well as a QUIC protocol access at

the same time. Through two-way communication, CloudCore

monitors Kubernetes resource changes and sends info to the

edge. Through this channel, EdgeCore uploads the metadata to

CloudCore, including edge node status and application status.

The received metadata are then reported to the kube-apiserver

by CloudCore.

 

Fig. 2. Spire Server and Agent realization at the cloud and edge (including
Mapper certificate installment)
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Fig. 3. Spire server and agent initialization, certificate provisioning and attestation chain at the cloud and edge. After Mapper component is successfully
attested and receives X509 certificate, Mapper proceeds with a successful pairing with the BLE-enabled device to capture temperature and pressure sensors
data to MQTT broker.

The previous two components, along with the Router which

sets the appropriate traffic paths, constitute the CloudCore. The

Router (which is already present in the KubeEdge framework)

is enhanced to support the features described in the previous

section, e.g., support multicasting routes of LED generated

traffic. The combination of the three different logics provides

the available information to the Resource Acquisition Manager

to configure the resource allocation.

The EdgeCore counterpart comprises a set of components

that enables respectively Pod lifecycle management (Edged),

sending/ receiving messages on MQTT topics (EventBus), in-

teracting with cloud-side components (EdgeHub), device man-

agement (DeviceTwin), message processing between Edged

and EdgeHub and storing/ retrieving metadata related the Pods

(MetaManager).

As shown in Figure 1, the EdgeCore communicates with the

Mapper, which is an agent component (edge side) responsible

to interface with the leaf devices. By implementing connec-

tion protocols (e.g., Bluetooth, ZigBee, Modbus, OPC UA)

supported by leaf devices, it creates a physical connection

between edge and an IoT device. The Mapper acts as an

asynchronous message broker by using MQTT. The existing

Mapper available in KubeEdge supports basic technologies

such as Zigbee and Bluetooth. It faces several limitations,

such as the missing support for multiple upstream data paths

and downstream control paths down to a leaf device. Most

important though, all these EdgeCore components lack au-

thentication and authorization features.

B. Spire Implementation

This section describes the development of Spire components

based on our Edge design shown in Figure 1.

The workflow to configure an IAM setup involves the fol-

lowing procedure, which is depicted in Figure 2. First, the

certificate chain begins with the creation of a self-signed

Certificate Authority (CA) root certificate, by using Open SSL,

for the Spire Server, and then, we create a leaf certificate for

the Spire Agent signed by the CA. Then, in the Spire Server,

based on config file, we enable the Upstream Authority plugin
to use the self-signed CA as the CA authority; then we enable

the Node Attestor plugin to accept attestation of the Spire

Agent.

In the Edge Node, we activate the Node Attestor plugin on

the Spire Agent side so that it may use the leaf certificate

to attest to the Spire Server. The Workload Attestor plugin is

also enabled, which initiates the workload API and waits for

workload attestation. Finally, at the Mapper, we integrate the

go-spiffe library to access the Workload API and attest itself

and additionally, it receives the certificate from the Spire Agent

after successful attestation.

Figure 3 demonstrates the full infrastructure provisioning

process that successfully realizes the certificate distribution

for the BLE-aware Mapper component. Unless the Mapper

entity is attested by the Spire agent, the Mapper is not allowed



to proceed with the pairing of the BLE-enabled device. The

Mapper on the bottom left prints the X509 certificate received

after successful attestation and on the right, the next step, the

pairing process is depicted.

IV. IOT DEVICE IDENTITY PROVISIONING

The objective is to ensure trustworthy components and con-

nections between all IoT entities that are engaged. Therefore,

we guarantee both the uniqueness of the device itself and the

legitimacy of the IoT device assigned to the Mapper.

Figure 4 shows the extensions to achieve IoT device certificate

installment through the Spiffe Helper utility and fetching

X.509 SVID certificates from the Spiffe workload API in order

to get the certificate for the STM32 microcontroller device; in

our implementation the STWIN SensorTile wireless industrial

node (STEVAL-STWINKT1B) is used, which is powered by

an ARM Cortex-M4 MCU.

 

Spire Server 

Upstream Authority 
 Plugin (Disk) 

CA Root Cert 

Config file Server Node Attestor 
X509 Plugin 

CLI 
Spire Server

Upstream Authority
Plugin (Disk)

CA Root Cert

Config file Server Node Attestor 
X509 Plugin

CLI

Cloud Node 

Spire Agent 

Agent Node Attestor 
X509 Plugin 

Leaf Cert Config file 
Workload Attestor 

Plugin (API) 

Spire Agent

Agent Node Attestor 
X509 Plugin

Leaf CertConfig file
Workload Attestor 

Plugin (API)

Edge Node 

Mapper 
go-spiffe lib Spiffe  

Helper 

STM32 
Microcontroller 

Device Cert 

Fig. 4. Full system realization includeing Spire server and agent at the cloud
and edge and IoT device certificate installment

Establishing a secure BLE connection with the IoT device is

necessary when the Mapper is confirmed and granted its cer-

tificate by the Spire Agent. Utilizing “LE Secure Connections”

which uses a Diffie-Hellman handshake to create a secure

channel of communication by exchanging a Long-Term Key

(LTK), is the most appropriate security solution among the

numerous provided by the BLE standard [17]. Developments

allowed the communication through SPI between the MCU

and the BLE module through which the latter was configured

to enable security, and thus to transfer the Spire certificate to

the MCU. The Diffie-Hellman handshake requires a keypair,

which the BLE module can only provide on its own. Future

plans call for changing the BLE Module’s source code to

enable the use of custom credentials and session-specific

SPIFFE certificates.

  

Fig. 5. Layout of the MCU and the Bluetooth module of the STEVAL-
STWINBX1 device

A. IoT Device Authentication

The first step in determining an IoT device’s trustworthiness

is to verify that the secure storage–that is, the secure slots

inside the STSAFE-A110 component that is integrated with

the device–is legitimate.

The device secure bootloader uses the STM root certificate

which enfolds the public key that can be used to verify the

STSAFE-A110 leaf certificate. As shown in the process in

Figure 6, upon successful verification the secure element is

trustworthy. This certificate is available to the bootloader and

is stored in the STSAFE-A110 secure data partitions.
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Fig. 6. MCU authenticating the certificate inside the STSAFEA110)

An additional procedure to establish secure connection with

a remote host might be adopted [18], however we followed a

homogeneous incremental strategy, by employing the SPIRE

procedure. Therefore, we only use the STSAFE-A110 leaf

certificate to verify the authenticity of the device and then the

SPIRE certificate to establish a secure network connection.

Figure 7 shows the validation of signature checking of the

private STSAFEA110 leaf certificate, after successful provi-

sioning.

V. CONCLUSIONS

Many edge devices and Internet of Things devices are un-

derpowered to execute sophisticated authentication algorithms.

Nevertheless in an IoT environment, enhanced trustworthiness

with validated identities is essential for guaranteeing the

integrity and reliability of linked devices. In this study, we

incorporated Spiffe and Spire technologies into the Kubedge

framework to support the establishment, management, and



Fig. 7. Experimental validation of STSAFEA110 certificate verification

identity verification of entities in the distributed Kubedge

environment, particularly in Edge IoT devices. With an em-

phasis on trustworthy identity issuance, attestation, and main-

tenance, Spire offers a standardized architecture for workload

identification. By using the Spiffe Helper plugin, we are

moving forward with extending certificate establishment to

Internet of Things microcontroller devices. Furthermore, we

integrated an advanced secure element technology that can

be activated, personalized and managed remotely to make it

easy to run differentiated and loyalty-building services with

absolute confidence.
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