
Quantum-secure Communication for Trusted

Edge Computing with IoT Devices⋆

George Kornaros1,2[0000−0002−2371−0633], Georgia Berki1,2, and Miltos
Grammatikakis1

1 Hellenic Mediterranean University, 71410 Iraklio, Greece
2 Intelligent Systems and Computer Architecture Lab, 71410 Iraklio, Greece

https://isca.hmu.gr
kornaros@hmu.gr

Abstract. Internet-of-Things(IoT)-based edge computing in smart fac-
tories, smart grid, agriculture, constructions and autonomous vehicles
include service-oriented gateways that connect with the cloud, perform
machine-to-machine communication, often transmiting large amount data
up and down the network, performing time-sensitive processing and in-
volving intelligent local decision-making. In view of a sharp increase in
cyberattacks today targeting edge computing, these gateways need to
provide digital signing and key negotiation for ensuring reliable data
sources, trusted applications and authentic devices and connections. In
contrast to common perception, we show that post-quantum cryptog-
raphy methods do not necessitate extensive modi�cation to adopt in
such environments; further, the cryptography algorithm's hardness is
preserved while ful�lling the IoT device's resource limitations. In partic-
ular, we demonstrate an e�cient method and an implementation on a
32-bit ARMCortex-M4, 64KB memory microcontroller, based on post-
quantum key encapsulation mechanisms (KEMs), for secure communi-
cation and authentication in an industrial IoT environment.

Keywords: trustworthy edge computing · IoT secure communications ·

post-quantum KEM · FrodoKEM · �rmware-over-the-air updating

⋆ This work was supported in part by the European Union (EU) Horizon 2020 Project
FLUIDOS (Flexible, scaLable, secUre, and decentralIseD Operating System) under
GA No. 101070473

2 G. Kornaros et al.

1 Introduction

With the trend toward increasing computing power while consuming less energy,
a challenge of edge computing is to ensure the integrity of a trustoworthy source
of information over the lifetime of the IoT/edge deployments[13]. For many edge
and IoT use cases, the data source is not physically integrated with the edge
computation hardware. Despite providing a hardware-based root of trust, meth-
ods for signatures/certi�cates, and smart safeguards for device and �rmware
protection [14], it is challenging to verify the authenticity of a sensor or other
device linked to an IoT gateway, yet it is required for developing a trusted edge
data source.

New quantum-resistant public key encryption, key encapsulation, and signa-
ture algorithms are being developed in response to recent breakthroughs in quan-
tum computer technology. These are increasingly endorsed in post-quantum pub-
lic key cryptosystems for potential IoT applications [12]. Lattice-based public-key
encryption (PKE) schemes hold a great promise for post-quantum cryptography.
Its security is dependent on lattices' worst-case computing assumptions, which
continue to be regarded as being tough even for quantum computers. Lattice-
based cryptographic methods bene�t from very strong security proofs based on
worst-case hardness, relatively e�cient implementations, as well as great simplic-
ity and, lately, their promising potential as a platform for constructing advanced
functionalities. The increasingly real threat of quantum computers breaking all
widely-deploy-ed public-key cryptography has driven research in new paradigms
for building core public-key primitives like signatures, public-key encryption,
and key encapsulation mechanisms (KEMs) from problems that are computa-
tionally intractable even for quantum computers. An umbrella term for this is
Post-Quantum Cryptography (PQC). The US National Institute of Standards
and Technology (NIST) is in the process of selecting new standards which will
be used for decades to come. The process has reached its third round with four
�nalists in the KEM/PKE category: Classic McEliece [1], Kyber [20], NTRU [6]
and Saber [10].

Key encapsulation methods (KEMs), also known as key encapsulation tech-
niques, are an asymmetric encryption technique that improves the safe trans-
mission (or production) of symmetric keys by eliminating the need for ran-
domly generated padding in short messages. This is the case for the algorithm of
FrodoKEM which is induced from an INDistinguishability under Chosen Plain-
text Attack (IND-CPA)-secure public-key encryption scheme called FrodoPKE
[5][2]. FrodoKEM is a Chosen Ciphertext Attack (CCA)-secure and Chosen
Plaintext Attacks (CPA)-secure lattice-based cryptosystem that relies on Learn-
ing with errors (LWE) problem solving for its protection. It has slightly larger
key sizes and slower performance as compared to other lattice-based models,
based on LWE rings. As constructed, FrodoKEM is also �constant-time�. To pre-
vent some forms of eavesdropping attacks, it does not need to be reoptimized in
terms of security. Constant-time is a cryptographic security feature that protects
against a variety of side-channel timing attacks.

Title Suppressed Due to Excessive Length 3

IoT devices are now commonly pre-provisioned with digital certi�cates that
have been issued by the manufacturer (or con�gured in collaboration with the
client) and are used for key exchange and authentication, which is a standard
practice in IoT security today. Even with immutable hardware, such as ROM,
second (or higher) stage boot loaders can rely on memory that is programmed
only later in the process by Original Equipment Manufacturers (OEMs). As
an example, in complex ecosystems, di�erent parties may be in charge of the
various stages in the chain. Therefore, automotives and Industrial IoT (IIoT)
environments increasingly use �rmware updating or patching with limited-life
session keys for authentication and key-exchange protocols. In order to secure
�rmware updates of industrial deployments with IoT devices, it is crucial to
apply cryptographic techniques that are immune to quantum technology-based
attacks.

1.1 Secure Communication in Industrial IoT-based Environments

Edge computing is becoming increasingly important in supporting the discovery
and authentication of infrastructure resources such as compute, network, and
storage, as well as other resources such as IoT devices, sensors, data, code units,
services, applications, or users interacting with the system. Today, centralized
gateway-based systems commonly rely on the installation of a secret on IoT and
computing devices for device authentication (e.g., a device certi�cate stored in a
hardware security module, or a combination of code and data stored in a trusted
execution environment).

Figure 1 shows a microfactory setup to provide improved preventive main-
tenance through data collection for monitoring of manufacturing processes. To
develop security measurements in each layer of the IoT technology stack and
e�ectively protect and recover from potential security threats and attacks, it is
crucial to establish authenticity and secure communicating with all IoT devices.
Most IoT devices are low-energy embedded devices that lack the computing re-
sources needed to support the implementation of advanced and e�ective authen-
tication and encryption algorithms because they are unable to perform complex
processing operations in real-time. At the same time, modern implementations
of RSA-based security protocols, including the latest Transport Layer Security
(TLS) 1.3 standard (which does not even support RSA key exchange) attempt-
ing to protect against microarchitectural and timing side channel attacks, are
shown to be at risk as new side-channel attack techniques are demonstrated to
overcome countermeasures in force[18].

In this paper, we demonstrate the integration of FrodoKEM in modest IoT
devices while extending �rmware updates for microcontrollers in a microfactory
environment that incorporates IoT devices for monitoring the factory machin-
ery. Constrained industrial IoT devices, such as LoRa end-nodes, are �rst autho-
rized by a FrodoKEM implementation in case of a two-way authentication sce-
nario. The successful authentication/authorization enables the �rmware updat-
ing of the embedded devices inside each island, through integrating KEM/PKE
for server-client authenticated key exchange. This is achieved by employing a

4 G. Kornaros et al.
I-FEVS “Unified Hierarchical FOTA”

Microfactory

4G LTE/5G

Server 1
Server 2

CAN - bus

Vehicle
Gateway

ECU 1
ECU

2

STM32MP1

μGW μGW

Main

R&D
Server 3Server N

Image

Server

CAN - bus

Vehicle
Gateway

ECU 1
ECU

2

STM32MP1

μGW μGW

Firmware Data

Director

server

Island2

CAN-bus/
MODbus

Machine

1

Machine

2

Time

Server

Island1

CAN-bus/
MODbus

Machine

1

Machine

2

Auth

Factory Gateway

R&D Gateway

Fig. 1. Security in a microfactory organization integrating quantum-secure island au-
thentication and uptane-based �rmware updating.

constant-time implementation of FrodoKEM, which follows the 1st-round spec-
i�cation, tailored for a resource-constrained STM32WL55JC1 LoRa device.

Despite the fact that the proposed framework is useful for the wider context of
establishing secure communication in constrained machine-type communication
environments, we present next a speci�c use-case.

Use-case. Providing security to IoT systems is a challenge[22], especially as new
wireless communication technology, low power wide area network (LPWAN) has
emerged as industrial IoT applications get closer to Industry 4.0 automation.
Due to the lack of security concerns against quantum attackers, previous re-
search has shown weaknesses in many existing IoT systems and services[16][19].
It is critical to o�er device security and authentication, together with remote
detection of technical issues. In this scope, Firmware-Over-The-Air (FOTA) up-
dates for Industrial IoT devices since IoT service management is becoming a
part of the new technological innovation connected to the emerging industrial
IoT, with features like adaptive security, scalable and e�cient routing, among
others.

The Uptane standard [8] has already been used successfully in the automotive
industry to mitigate risks, including local and remote assaults, that aim to inter-
cept and tamper with the new �rmware in order to update the IoT device with a
modi�ed and purposefully defective �rmware image. Similarly, in an IoT-enabled
factory infrastructure, adversaries may deny a device's functions via a rollback
assault, or drain a microcontroller's resources in a denial-of-service manner, or,
in the most severe case, control an IoT device with malicious software.

Using an Edwards-curve Digital Signature Algorithm (EdDSA) variant, the
ED25519, which is not quantum resistant, ASSURED, a framework for over-the-
air (OTA) software update [3], provided end-to-end authentication and integrity
so that only authorized devices could install the update. Heterogeneity of IoT
devices and very constrained devices are not considered though. Examples of

Title Suppressed Due to Excessive Length 5

employing ARM TrustZone technology have been suggested to facilitate a se-
cure �rmware-over-the-air (FOTA) update [11]. The image signature is veri�ed
using the RSA technique, while the validity and the corruption of the image are
checked using an application that is operating in a secure OP-TEE. However,
the solution is not generic and not tailored for IoT devices with very constrained
capabilities. A �rmware-over-the-air solution was also built on top of a real-time
OS utilizing an STM32F779NI MCU vehicle gateway, where both the Primary
and Secondary client functions were combined into a single entity [17]. Inter-
nally, the vehicle's gateway Electronic Control Unit (ECU)'s secure CAN-bus
interface for �rmware transfer was accomplished, however the ECUs lacked ro-
bustness against quantum attacks.

PQC-based Extensions for FOTA Updating. Figure 2 presents an overview
in a PQC-strengthened device authentication setup, through a two-factor au-
thentication of gateway-devices inside IoT-islands. An ephemeral key can be
shared by two parties via KEM, a one-round protocol. In particular, a sender
creates a ciphertext of an ephemeral key using the public key of a recipient. The
sender cannot speci�cally select the ciphertext. The receiver then uses the same
ephemeral key to decipher the ciphertext. Encapsulation and decapsulation, rep-
resented by Encaps and Decaps, respectively, are the terms used to describe the
algorithms used by the transmitter and the receiver. The restrictions imposed
by IoT devices and communications need to be taken into account in order to
provide a realistic implementation when this approach is utilized for ephemeral
key exchange whenever a new FOTA update is launched. Speci�cally, the size
of PQ public key or signature can become an additional constraint. In partic-
ular, FrodoKEM public key (pk) and ciphertext (ct) is 19336 bytes. Since, the
maximum payload size of a LoRa packet cannot exceed 222 bytes considering
the Eu863-870 region, we use the LoRa established (and AES-encrypted) link
to send part or parts of the pk and ct. The remaining bytes are send via the
gateway-to-gateway link and assembled in place.

Gateways provide secure communication by utilizing TLS 1.3, and ephemeral
key exchange in TLS 1.3, as standardized, is based entirely on elliptic curve
Di�e-Hellman, while the transition to post-quantum cryptography promises to
provide great potential for both secrecy (through post-quantum key exchange)
and authentication (by post-quantum digital signatures)[9].

2 FrodoKEM Implementation on Low-end IoT Devices

When a large number of devices are active at once, it becomes challenging to
identify security risks and adversaries who can infect authorized devices and ob-
fuscate the enormous volumes of data being transmitted across the network. To
provide authentication and authorization without having to invest in new de-
ployments, common approaches involve adding a security device in front of each
traditional industrial IoT object. For resource-constrained devices and LPWAN
settings, we provide the FrodoKEM implementation to extend this strategy and

6 G. Kornaros et al.

``

Gateway

Monitoring – Predictive

Maintenance

Cloud

Computing

IoT Sensor

devices

pkec

(pk
ec

 sk
ec

) KEM
e
.Keygen()

(ss
es

 ct
es

) KEM
e
.Encapsulate(pk

ec
)

ct
es

ss
es

 KEM
e
.Decapsulate(ct

es
,sk

ec
)

Gateway

Ethernet, WiFi

Island 1

Island 2

(ss
ec

 ct
ec

) KEM
e
.Encapsulate(pk

es
)

ss
ec

 KEM
e
.Decapsulate(ct

ec
,sk

es
)

(pk
es

 sk
es

) KEM
e
.Keygen()

pk
es

ct
ec

Authenticating Client

Device
Authenticating Server

Gateway

Fig. 2. Microfactory organization integrating quantum-secure gateway-device key ex-
change with authentication for �rmware updating.

make the devices quantum resistant (i.e., secure against the quantum computers
being developed today).

STM32WL55JC1 multiprotocol LPWAN includes a dual core microcontroller,
a 32-bit Arm Cortex-M4 and an ARM Cortex-M0, operating at a frequency up
to 48 MHz, while it accomodates a Flash memory of 256 KB and an SRAM of
64 KB. The adaptive real-time accelerator (ART Accelerator) allowing 0-wait-
state execution from Flash memory, can enable e�cient storage and retrieval of
�rmware data, not able to sustain during �rmware execution due to restricted
memory space.

The FrodoKEM-640 scheme is realized to establish an authentic LoRa end-
device for initiating the Uptane-based protocol between the devices behind the
LoRa end-device and inside a microfactory island. FrodoKEM-640 can use either
advanced encryption standard, AES (e.g., 128, 256), or SHA-3-based extendable-
output function SHAKE to create internal sample matrices during encryption or
decryption. The algorithm has three basic functions: the KeyGen(), the Encaps()
and the Decaps(). The KeyGen() is the function which generates the two keys:
the �rst key is the public key and the second one is the secret key. The Encaps()
function uses the public key and generates the cipher text and the shared_secret
of encaps. Decaps() uses the secret key and ciphertext as parameters; with the
processing of these functions, another share_secret is generated for Decaps().
If the two share_secrets are equal then the gateway � LoRa end-device link is
secured.

KeyGen() refers to certain parts of code and its function is under the name
Keypair[2]. The function parameters include the public key pk and the secret
key sk. First, the public key is created and then, with the usage of this key, the
secret key is generated.

Title Suppressed Due to Excessive Length 7

This process involves the generation of a random matrix called seedA and
is composed of 16 bits; then, with the help of these 16 bits (i.e., seedA), the
function Frodo.Gen generates the matrix A. Frodo.Gen or seedA has two forms.
The �rst one uses the crypto algorithm SHAKE128 and the other one the AES.
Moreover, a pseudorandom bit string is generated, to create two arrays, the array
S and the array E, with Frodo.SampleMatrix. The next step is to compute the
arrays A, S and E with the combination B = AS+E, with b being equivalent to
Frodo.Pack(B). Furthermore, it is important to create pkh=SHAKE(seedA||b,
len(pkh)), where '||' denotes the concatenation operation. The last step is to re-
turn the public key or pk=seedA||b and the secret key or sk=(s||seedA||b, S, pkh).
This process is summarized next.

seedA ←− U(0, 1)len(seedA)

A←− Frodo.Gen(seedA)

S,E ←− χ

Z

(
nx

−
n

)
q

 , χ is a Gaussian distribution over

Z with center zero and standard deviation σ (2.8)

B ←− AS + E

b←− Frodo.Pack(B)

pkh←− SHAKE(seedA||b, len(pkh))
pk ←− seedA||b, sk ←− (s||seedA||b, S, pkh)

After the receiving entity gets the public key pk, i.e., (seedA, b), the Encaps()
(encryption) process generates the cipher text and the share_secret. The Encaps
parameters are the public key, the cipher text and the share_secret Initially, the
algorithm creates a key matrix, called m. Next, two pseudorandom arrays are
generated via SHAKE to create the seed SE and a random bit string. This
random bit string is separated in three parts and each part is processed with the
Frodo function SampleMatrix which normalizes the arrays; more speci�cally, it
samples the error matrix and creates the three matrices: E', S' and E�.

Moreover, a new array called A is generated. This implementation includes
giving the �rst 16 bits of the public key to the Frodo.Gen(seedA) function. Next,
the B'=AS' + E' is computed and B' produces c1=Frodo.Pack(B'). After, b,
which is part of the public key, is unpacked and B is created, as B=Frodo.Unpack(b).
The B,S' and E� are computed and produce V=S'B+E� and the array C, as
C=V+Frodo.Encode(m). C is computed in order to create c2 with the function
pack, as c2=Frodo.Pack(C). The last step is to compute the share_secret which
is named ss, and the computation is implemented with the function SHAKE128
where ss=Shake(c1||c2||k,lenss). The Encaps() algorithm is summarized next.

8 G. Kornaros et al.

m←− Frodo.Gen(seedA)

S′, E′ ←− χ

Z

(
nx

−
m

)
q

 , χ is a Gaussian distribution over

Z with center zero and standard deviation σ (2.8)

A←− Frodo.Gen(seedA)

B′ ←− AS′ + E′

E′′ ←− χ

Z

(
−
nx

−
m

)
q

V ←− S′B + E′′

c1←− Frodo.Pack(B′)

C ←− V + Frodo.Encode(m)

c2←− Frodo.Pack(C)

ciphertext c←− (c1||c2),
share_secret ss←− SHAKE(c1||c2||lenss)

Decaps() or decryption is required to ensure the validity of the ciphertext with
the evaluation of the share_secret. The Decaps function operates on the secret
key, ciphertext and share_secret. The objective of the decryption algorithm is
to check that share_secret1 is equal to the share_secret2 and thus to verify that
there is no attack[2].

Initially, the ciphertext produces c1 and c2 by unpacking as B'=Frodo.Un-
pack(c1) and C=Frodo.Unpack(c2). B' and C with a part of secretkey, which is
called S, generate the array M, by computing M=C-B'S, and then Frodo.Decode(M)
produces m. Pk includes the pk=seedA||b from the secret key. Afterwards, two
pseudorandom arrays, seedse′ , k' and a random bit of string are generated[2].
This random bit of string is separated in three parts and the three matrices
E', S' and E� are created by sampling. The algorithm also creates a new ar-
ray A. After, the computation B�=AS'+E', the goal is to get B by unpack-
ing b and calculate the V=S'B+E�. Then, V is used to produce array C', as
C'=V+Frodo.Encode(m). The last step is to check if B'||C is equal to B�||C'. If
the arrays are equal, then the share_secret, ss, is created with the right variables,
otherwise the share_secret includes a variable error.

Title Suppressed Due to Excessive Length 9

B′ ←− Frodo.Pack(c1)

C ←− Frodo.Pack(c2)

M ←− C −B′S

m←− Frodo.Decode(M)

A←− Frodo.Gen(seedA)

S′ ←− χ

Z

(
nx

−
m

)
q

E′ ←− χ

Z

(
nx

−
m

)
q

B′′ ←− AS′ − E′

B ←− Frodo.UnPack(b)

E′′ ←− χ

Z

(
−
nx

−
m

)
q

V ′′ ←− S′B − E′′

C ′ ←− V + Frodo.Encode(m)

ss←− SHAKE(c1||c2||k′, lenss), if B′||C == B′′||C ′

ss←− SHAKE(c1||c2||s, lenss), if B′||C! = B′′||C ′

3 Adjusting Implementation to Resource-constrained

Microcontrollers

Table 1 shows the basic data structures size in bytes. In addition, the required
memory for the execution of the encryption function peaks to 51248 bytes, as
measured by using an STM32L552ZE nucleo device that includes 512 Kbytes of
Flash memory and 256 Kbytes of SRAM. By adding the variables allocated at
runtime, the required memory grows even to 101368 bytes. It is therefore pro-
hibitive for a microcontroller with modest SRAM, such as the STM32WL55JC1
LoRa device, to run even the encryption algorithm.

Table 1. Memory requirements of FrodoKEM640 in bytes (note that secret key size
is the sum of the sizes of the actual secret value (10272 bytes) and of the public key
(9616 bytes))

secret key (sk) public key (pk) ciphertext (c) shared secret (ss)

19888 9616 9720 16

10 G. Kornaros et al.

The memory footprint of FrodoKEM640 by using AES and SHAKE algo-
rithms on STM32L552ZE board is summarized in table 2.

Table 2. Memory requirements (program RAM) of FrodoKEM640 in bytes on
STM32L552ZE board.

FrodoKEM640 Keypair Encaps Decaps

AES (1-way, 2-way cache) 41160 82032 102680
SHAKE (1-way, 2-way cache) 36064 57728 78376

AES with Flash 30952 51832 61232
SHAKE with Flash 25840 27528 37928

Hence, to minimize memory usage, memory space is reused whenever possi-
ble. For instance, B and Bp and BBp data structures require 10240 bytes and
thus, all share the space called sp. For instance, variables k′ and ct (ciphertext)
are allocated as follows:
uint8t ∗ Finct = &sp[0];
uint8t ∗ Fink = &sp[4860];

Figure 3 shows the performance of the FrodoKEM640 on STM32WL55JC1
through using two methods. First, by using the board's builtin 32-bit timer
TIM-2, and second, the debug and trace unit (DWT), which contains a cycle
count register (DWT_CYCCNT). Comparatively, the Shake option of Encaps
function gives 7.22% improved latency against the AES version.

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

KeyGen Encaps Decaps

FrodoKEM on STM32WL55JC1 (M4 @48MHz)

FrodoKEM-640-AES FrodoKEM-640-SHAKE

Fig. 3. Latency of keypair(), encaps() and decaps() functions on STM32WL55JC1
through using the Flash to store big data structures; Measurements in M4 MCU clock
cycles (i.e., 48MHz) are captured via TIMER-TIM2.

The STM32L552ZE platform, which has su�cient hardware resources but
lacks the LoRa controller, was used as a reference point. Figure 4 summarizes

Title Suppressed Due to Excessive Length 11

the latency of FrodoKEM640 by using AES and SHAKE algorithms on the
STM32L552ZE platform. The -Ofast compiler option is used to optimize for
speed, and comparison results are gathered when alternative cache con�gurations
are chosen. The Shake option of Encaps function delivers 1.14% smaller latency
(1.309 sec vs. 1.495 sec) than the AES option when the 1-way cache is activated
and an additional 0.9% improved latency (1.296 sec) when the 2-way cache is
active. Hence, no signi�cant gain is observed.

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

450,000,000

500,000,000

KeyGen Encaps Decaps

FrodoKEM on STM32L552ZE (M33 @110MHz)

FK1WC FK2WC FK FK1WCF FK2WCF

FKS1WC FKS2WC FKS1WCF FKS2WCF FKS

Fig. 4. Latency of keypair(), encaps() and decaps() functions on STM32L552ZE; Mea-
surements in M33 MCU clock cycles (i.e., 110MHz) are captured via TIM2. The dif-
ferent versions of FrodoKem (FK) include 1-way or 2-way cache (1WC, 2WC) without
and with involving Flash(F), the �rst �ve versions use AES and the next �ve versions
use Shake (S).

Figure 4 depicts the latency also of FrodoKEM (FK) without using cache, not
only as a reference, but most importantly as a potential countermeasure method
against return-oriented Flush-Reload cache side-channel attacks on ARM pro-
cessors[23]. As suggested, such attacks on ARM can be completely eliminated if
no memory sharing is allowed between apps. When considering other side chan-
nel threats[7][21], however, trustworthy application execution is recognized as
being more crucial than speed.

While the major goal is security and incorporating PQC KEM mechanisms in
a restricted capacity LoRa platform, our encapsulation time and decapsulation
time are longer than those of previous post-quantum lattice-based techniques [15]

12 G. Kornaros et al.

but are still adequately e�cient. For example, considering a common X.509
certi�cate veri�cation with a latency of more that 3.3sec (ECDSA with SHA256),
as shown in Figure 5, the proposed KEM implementation delivers promising
results. Additionally, note that a single LoRa packet payload of maximum size,
222 bytes at the fastest SF8, requires 655.9ms, while the SF12 mode (but with
a 51 byte payload) needs 2.793 sec.

Read leaf certificate

(X.509, NIST-P-256)

Verify leaf certificate

(M4)

45.36 mW

125 mW

100 mW

Time (s)

Power

(mW)

20ma/66mW

35ma/115.5mW

0.7 s 1.0 s 1.2 s

LoRa: SF8, 220B payload, 655.9 ms time-on-air

Fig. 5. Power consumption of STM32WL55JC1, for ARM Cortex-M4 (at 48MHz) com-
puting STM manufacturer provided X.509 certi�cate, ECDSA signature, and a single
LoRa packet Tx of 222 bytes; measurement are captured via external INA219-based
board sensor.

By examining memory needs, we observe that post-quantum �ash require-
ments can increase by more than 10 times the size of pre-quantum �ash. The
requirement for stack memory is also signi�cantly increased by post-quantum
techniques. As a result, switching to post-quantum signatures necessitates an
increase in memory (stack and �ash) and bandwidth (for keys and signatures).

4 Conclusion

In this paper, we show that quantum-resistant solutions in IoT-based edge
and fog computing paradigms with resource-limited industrial IoT devices are
future-proof and post-quantum security is cost-e�ective and controllable. Due
to its anti-quantum attack properties and shorter, quicker calculation processes,
FrodoKEM, a Ring-LWE based encryption method that relies on hard problems
on the lattice, is practically realized for data security between IoT nodes. We
demonstrated an e�cient realization of FrodoKEM640 with a reduced memory
footprint to �t the STM32WL55JC1 ARM Cortex-M4 microcontroller board
with just 64KB of RAM, to make the point that lattice-based cryptography can
practically enhance security of resource-limited IoT devices. Even though �nely-
tuned version of the algorithm (i.e., written in assembly), which performs better,
or hardware-accelerated functions (e.g., integrated hardware AES), or other opti-
mized method (e.g., SABER[4]) can be employed, ease of realization, fast-time-to
market and development e�ort are essential factors in industry. These options
are included in our future plans.

Title Suppressed Due to Excessive Length 13

References

1. Albrecht, M.R., et al.: Classic mceliece, merger of classic mceliece and nts-kem
(May 2021), https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-
submissions

2. Alkim, E., Bos, J., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Niko-
laenko, V., Peikert, C., Raghunathan, A., Stebila, D., Easterbrook, K., LaMac-
chia, B.: Frodokem learning with errors key encapsulation. NIST, Gaithersburg,
MD, USA, Tech. Rep (2021), https://frodokem.org/�les/FrodoKEM-speci�cation-
20210604.pdf

3. Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A.R., Tsudik, G.: Assured:
Architecture for secure software update of realistic embedded devices. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 37(11),
2290�2300 (2018). https://doi.org/10.1109/TCAD.2018.2858422

4. Barton., J., Buchanan., W., Pitropakis., N., Sayeed., S., Abramson., W.: Post
quantum cryptography analysis of tls tunneling on a constrained device. In:
Proceedings of the 8th International Conference on Information Systems Se-
curity and Privacy - ICISSP,. pp. 551�561. INSTICC, SciTePress (2022).
https://doi.org/10.5220/0010903000003120

5. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take o� the ring! practical, quantum-secure key
exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1006�1018. CCS '16 (2016).
https://doi.org/10.1145/2976749.2978425

6. Chen, C., et al.: Ntru (2020), https://csrc.nist.gov/Projects/post-quantum-
cryptography/round-3-submissions

7. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without actually seeing
it: UI state inference and novel android attacks. In: 23rd USENIX Security Sym-
posium (USENIX Security 14). pp. 1037�1052. USENIX Association, San Diego,
CA (Aug 2014), https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/chen

8. Community, U.: Uptane standard for design and implementation v1.2.0,
https://uptane.github.io/papers/uptane-standard.1.2.0.html

9. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key
exchange and authentication in tls and ssh. Cryptology ePrint Archive, Paper
2019/858 (2019), https://eprint.iacr.org/2019/858

10. D'Anvers, J.P., et al.: Saber (2020), https://csrc.nist.gov/Projects/post-quantum-
cryptography/round-3-submissions

11. Dhobi, R., Gajjar, S., Parmar, D., Vaghela, T.: Secure �rmware update over
the air using trustzone. In: 2019 Innovations in Power and Advanced Comput-
ing Technologies (i-PACT). vol. 1, pp. 1�4 (2019). https://doi.org/10.1109/i-
PACT44901.2019.8959992

12. Fernández-Caramés, T.M.: From pre-quantum to post-quantum iot se-
curity: A survey on quantum-resistant cryptosystems for the internet
of things. IEEE Internet of Things Journal 7(7), 6457�6480 (2020).
https://doi.org/10.1109/JIOT.2019.2958788

13. Hopkins, K., Bergquist, J., Ortner, B., Kröger, M., Wong, S.: Edge se-
curity challenges. Kubernetes IoT Edge Working Group, Whitepaper
(2019), https://github.com/kubernetes/community/tree/master/wg-iot-
edge/whitepapers/edge-security-challenges

14 G. Kornaros et al.

14. Kornaros, G.: Hardware-assisted machine learning in resource-constrained IoT en-
vironments for security: Review and future prospective. IEEE Access 10, 58603�
58622 (2022). https://doi.org/10.1109/ACCESS.2022.3179047

15. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key
encapsulation mechanism for IoT devices. IEEE Access 7, 2080�2091 (2019).
https://doi.org/10.1109/ACCESS.2018.2884084

16. Liu, Z., Azarderakhsh, R., Kim, H., Seo, H.: E�cient software implementation of
ring-lwe encryption on IoT processors. IEEE Transactions on Computers 69(10),
1424�1433 (2020). https://doi.org/10.1109/TC.2017.2750146

17. Mbakoyiannis, D., Tomoutzoglou, O., Kornaros, G.: Secure over-the-air �rmware
updating for automotive electronic control units. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. p. 174�181. SAC '19 (2019).
https://doi.org/10.1145/3297280.3297299

18. Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong, D., Yarom, Y.: The
9 lives of bleichenbacher's cat: New cache attacks on tls implementations. In:
2019 IEEE Symposium on Security and Privacy (SP). pp. 435�452 (2019).
https://doi.org/10.1109/SP.2019.00062

19. Sajid, A., Abbas, H., Saleem, K.: Cloud-assisted iot-based scada systems security:
A review of the state of the art and future challenges. IEEE Access 4, 1375�1384
(2016). https://doi.org/10.1109/ACCESS.2016.2549047

20. Schwabe, P., et al.: Crystals-kyber (2020), https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-3-submissions

21. Sepúlveda, J., Gross, M., Zankl, A., Sigl, G.: Beyond cache attacks: Ex-
ploiting the bus-based communication structure for powerful on-chip microar-
chitectural attacks. ACM Trans. Embed. Comput. Syst. 20(2) (mar 2021).
https://doi.org/10.1145/3433653, https://doi.org/10.1145/3433653

22. Yunakovsky, S.E., Kot, M., Pozhar, N., Nabokov, D., Kudinov, M., Guglya,
A., Kiktenko, E.O., Kolycheva, E., Borisov, A., Fedorov, A.K.: Towards se-
curity recommendations for public-key infrastructures for production environ-
ments in the post-quantum era. EPJ Quantum Technology 8(1) (may 2021).
https://doi.org/10.1140/epjqt/s40507-021-00104-z

23. Zhang, X., Xiao, Y., Zhang, Y.: Return-oriented �ush-reload side channels on
arm and their implications for android devices. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. p. 858�870. CCS
'16 (2016). https://doi.org/10.1145/2976749.2978360

