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Abstract. Scheduling multiple containerized tasks to edge computing nodes requires 
toolchains that lay out the necessary computational/communication models, algorithms, 
and methodology. The proposed toolchain performs stochastic optimization using 
simulated annealing (SA) and aims to support automated pod assignment to edge 
computing nodes. Different input parameters specify pod computational and 
communication requirements and edge nodes performance characteristics, as well as 
mapping options and algorithmic characteristics that affect the quality of the solution. 
Preliminary results from an eHealth-related digital twin (DT) use-case demonstrate 
limited load imbalance when scheduling DT workloads consisting of mixed HTTP 
PUT/POST and GET workloads to worker nodes (Raspberry Pi4) of a Kubernetes edge 
computing cluster. DT requests support basic create, read, update, and delete (CRUD) 
operations for modeling virtual real-time replicas of ECG biosensors within a Linux 
server-based open-source Eclipse Ditto DT management system that integrates the 
MongoDB database. Finally, we examine database server performance for simple DT-
like CRUD operations on a Linux server. Results indicate that LittleD, a lightweight, 
low-cost, limited SQL-based database, designed initially for small systems, offers a much 
smaller average latency than MongoDB (used in Eclipse Ditto), InfluxDB, or MariaDB.  
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1   Introduction 

IoT applications utilizing cloud resources often suffer from high latency and low 
network bandwidth. A solution uses hierarchical network operations, shifting 
computations from the cloud to the edge or fog layers. The solution must readily adapt 
to manage diverse containerized applications in production environments. Hence, the 
concept of Kubernetes has evolved, since its inception in the early 2000s, towards 
lightweight, resource-limited, certified distributions, such as K3S by Rancher Labs; 
implementations are easy to install, deploy, and manage at the edge [1].  
Within this context, the Kubernetes scheduler (kube-scheduler) maps pods across 
available worker nodes in the edge computing cluster. Pods represent a group of one or 
more containers inside which applications are running; hence, pods are the smallest 
schedulable units. Scheduling is usually based on the pods’ resource constraints and 
requirements (e.g., CPU and network), and the current resource availability. Hence, the 
kube-scheduler assigns newly created pods to a suitable worker node with at least as 



 

 

many resources, usually with a fast best-fit algorithm. This algorithm performs two 
operations in sequence: filtering and scoring. Filtering examines a set of hard 
constraints that a node must meet to run a pod. Scoring evaluates worker nodes for pod 
placement against a set of resource-related utilization and load-balancing criteria. 
Kubernetes separates worker nodes from control. Worker nodes (k3s agents) support: 
a) the kubelet runtime environment used for ensuring that containers are healthy, and 
for deploying/managing pods and distributed services, and b) kube-proxy for inter-
worker communication (via host subnetting), and external communication to the 
control plane (k3s master). The control plane runs the API server for interacting with 
the cluster, the kube-scheduler, the kube-controller managers (e.g., for job, node, 
endpoint, replication, and account services), and a high availability key-value store 
based on etcd used for saving cluster state, configuration, and metadata.  
Since the default kube-scheduler is not aware of pod requirements and the architecture 
or network topology of worker nodes, it often results in non-optimal pod placement that 
violates performance requirements. Hence, since 2019, hundreds of research papers 
have focused on extending the current state-of-the-art in Kubernetes scheduling [2-4]. 
Furthermore, several practical projects proposing components that make smart Pod 
placement decisions are supported by the Kubernetes SIG Scheduling Group [5]. Some 
of these projects contribute to configuration options that control node selection in the 
scheduler, e.g., by performing placement via label, inter-pod node affinity, and anti-
affinity specifications, or using taints/tolerations that provide limits for node sets and 
pods. Certain pod-related options might also be useful to express, in an abstract way, 
data locality, inter-worker node workload interferences, and deadlines. 
In addition to configuration options, the kube-scheduler provides extensions. They 
extend from calling an external process via HTTPS to executing custom filtering and 
scoring to enabling multiple plugins per pod that operate on the pod queue or 
implementing custom scheduling components (or related logic) per pod, usually by 
directly modifying the default scheduler’s source code. Recent extensions of the 
Kubernetes scheduler (or algorithms tested in simulators) refer to generic scheduling, 
multi-objective optimization, AI-based scheduling, and autoscaling-enabled scheduling 
for edge-cloud, fog, or cloud-based configurations [2-4]. However, very few state-of-
the-art solutions refer to edge computing, where resources are severely limited, and 
different challenges apply, such as criticality (soft or hard real-time), performance, 
scalability, energy efficiency, and reliability constraints.  
On the theoretical side, Oleghe proposes heuristic scheduling based on multi-objective 
optimization and graph network modeling concepts for container placement and 
migration in edge servers [6]. Wojciechowski et al. use dynamic network measurements 
gathered automatically by a dedicated infrastructure layer (implemented via the Istio 
Service Mesh) to improve inter-application node bandwidth and response 
characteristics [7]. This approach is crucial for the adoption of Kubernetes in 5G 
networks. Ogbuachi et al. utilize real-time monitoring from node resources (CPU, 
memory, and network load) to improve the performance and fault tolerance of dynamic 
orchestration in edge computing applications [8]. Li et al. extend this work by 
dynamically managing the disk I/O load of worker nodes [9] using two policies. 
Balanced-Disk-IO-Priority (BDI) focuses on I/O balance across nodes, while Balanced-
CPU-Disk-IO-Priority (BCDI) considers CPU and disk I/O load imbalance on a single 
node. Finally, Haja et al. developed a custom, open-source Kubernetes scheduler 



 

 

extension that uses both edge reliability constraints and periodic delay measurements 
across different edge nodes [10, 11]; their heuristic is suited for latency-sensitive edge 
applications. This is the only scheduler extension available in the open community. 
In this work, we develop an open-source simulated annealing tool and demonstrate its 
efficiency on dynamic workloads derived from a Digital Twin e-Health use case related 
to real-time ECG monitoring from wearable BT biosensors. 
Like Ogbuachi’s work [8], our contribution focuses on context-aware scheduling in 
edge computing by considering system/network statistics, e.g., CPU and network 
metrics. However, unlike Ogbuachi’s work, our implementation is open-source and 
considers inter-task synchronization. Moreover, common optimization methods, such 
as Newton-Raphson, Simplex, Least-squares, and Multistep (used in default kube-
scheduler and partly in [8]), suffer from the inability to distinguish a local minimum 
from a global one since they follow the local gradients; thus, they are useful if the 
starting solution is sufficiently close to the global minimum. However, simulated 
annealing escapes a local extreme by occasionally moving against the gradient. 
While previous scheduling work uses web server or HPC testbenches, our experimental 
use case demonstrates the efficiency of our scheduling tool using a digital twin of real-
time ECG monitoring using Eclipse Ditto with MongoDB. In this context, our work 
also examines the effect of using basic CRUD operations on different databases, 
demonstrating the performance of LittleD (limited SQL) over MongoDB (NoSQL, used 
with Eclipse Ditto), InfluxDB (Time Series), and MariaDB (SQL). Our LittleD 
comparisons extend the work of Arnst et al. [12], who compared MongoDB, InfluxDB, 
and MariaDB on storage/retrieval of highly recurrent IoT sensor data. Based on read-
and-write performance, resource consumption, and qualitative software complexity 
metrics, Arnst et al. endorsed InfluxDB as a more suitable DBMS. 
Section 2 discusses the architecture of the software tool. Section 3 focuses on analyzing 
the effectiveness of the mapping tool. It discusses the experimental framework and the 
digital twin use case. Finally, Section 4 provides a summary and discusses future work. 

2   Simulated Annealing Tool 

The pod assignment tool inputs: a) a task graph specifying the pods’ structure, including 
the constituent components, their properties, and their relations, and b) a graph 
modeling the target cluster. Hence, the simulated annealing tool uses the following 
input parameters for dynamic workload management and resource allocation. 
 The task graph specifies computation and (inter-pod) communication requirements 

for each pod, using a) the number of pods, b) the expected computation load of 
each pod, e.g., in cycles, c) an affinity flag per pod (-1 if the pod is not fixed to any 
node, or positive if the pod is fixed to a given node or groups of nodes), d) a matrix 
providing the communication and synchronization cost among corresponding pairs 
of pods, e.g., in bytes. 

 The target cluster model considers worker node properties, including a) the number 
of nodes, b) the node type (indexing a hardware file arch), c) the number of 
communication links per node, and d) a matrix describing the link types for each 
connected node (also indexing arch). The file arch provides for each node, the 



 

 

node bandwidth, e.g., in cycles per second, and communication link properties, 
including send/receive startup time, and maximum link bandwidth, e.g., in bytes/s. 

With N nodes and M pods, the total input data amounts to at least O(max{M2, N2}) 
elements (with matrix representation), but it can be much less for symmetric pods or 
node configurations when using an adjacency-list graph representation. 
The algorithm optimizes pod assignment to nodes by first calling function 
random_solution()to randomly assign pods to nodes, considering any type of 
pod affinity (or anti-affinity) properties. Using this preliminary assignment, the tool 
predicts the total execution delay (our cost model), which considers each pod’s 
computation and communication/synchronization requirements. 
Then, the algorithm calls the function set_starting_temp() to compute a 
starting temperature. It does so by performing ten random moves from ten different 
initial configurations.  The starting temperature is set to ten times the (absolute) average 
change in cost so that large variations are initially possible.  
Then, the algorithm repeats the main annealing loop, until reaching a maximum 
allowable cost, tool execution time, or maximum number of iterations; another 
possibility is to compare the actual percent change in cost per minute to the expected 
percent change. Within this annealing loop, another independent chain loop repeatedly 
calls function perturb() to randomly reassign pods to nodes, rerouting 
communication traffic based on the new mappings until either the percentage of 
accepted moves or the percentage of improved moves becomes too low, i.e., below the 
user-defined thresholds. This random perturbation of elements in the existing solution 
gives a chance for the algorithm to find a better solution, i.e., with a shorter execution 
time. Perturbation invokes one of three functions in a random, but consistent manner. 
 Function alter_mapping() alters the assignment of pods by choosing a pod 

at random and assigning it to a random node. This process is repeated until 
satisfying basic constraints, e.g., the maximum number of node hops allowed for a 
message to travel. 

 Function alter_path() provides a new set of random communication paths. 
Paths are not altered if the maximum number of node hops is one, which indicates 
that the network is fully connected. 

 Function alter_prio_order() selects two pods (assuming they have the 
same priority) and interchanges their order.  

After calling perturb() within an inner chain loop, a) the starting temperature for 
the next annealing loop iteration is increased if the specified minimum fraction of 
accepted/improved moves is not obtained, or else b) the current temperature is 
decreased by a user-defined temperature_decrement factor. At the end of the 
chain loop, the chain_length for the next chain run increases by a pre-selected 
chain_factor. The minimal cost function encountered over all runs is retained. 

3   Digital Twin Use-Case: Scheduling and Database Considerations  

The experimental setup for testing the scheduling tool is based on the concept of Digital 
Twin (DT) [13] [14][15]. DT provides digital replicas of physical devices, processes, 
or systems that perform real-time monitoring of sensors, analysis, and decision-making. 



 

 

DTs are used in IoT and Industry 4.0 for predicting performance and wear-out effects 
based on historical sensor data. In e-Health, they are used for monitoring or diagnosis. 
In our use case, we have developed a DT representing an STMicro BGW single-lead 
biosensor operating at 128 or 256 ECG pulses/s with 12-bit precision. The embedded 
prototype consists of an open-source server that stores the sensors' DT [16] [17]. The 
server is a Dell PowerEdge T330 with 32GB RAM and 4 HDD drives, running Ubuntu 
22.04.2 LTS and Eclipse Ditto 3.3.0 from [17]. Eclipse Ditto integrates the Mongo-DB 
database, a non-SQL, document database that stores DT data as a hierarchy of key-
value pairs. MongoDB [18] provides a rich query language with a wide range of DT 
operations, such as create, read, update, delete, and search using either Web Sockets, 
or HTTP PUT/POST, GET, DELETE, and FIND calls. Connectivity from each BT-
based, BGW biosensor to the server requires a BT-to-Ethernet driver running on a 
Raspberry Pi 4 device connected to a 2.1 Gbit/s TP-Link Archer C5400 router. A typical 
JSON key-value pair of the BGW DT includes access control, attributes (manufacturer, 
gateway info), features (BGW details), and properties (ECG array, date/time, and rate). 

Fig.1 Performance of DT operations: PUT vs.  GET. 

Experiments on a custom Kubernetes (k3s) cluster with 3 to 5 Raspberry Pi 4 nodes 
(one K3S server and two to four K3S worker nodes) reveal the relative cost of DT 
operations. For example, as shown in Fig. 1, GET achieves a much higher rate (up to 8 
times more for low rates) than PUT. Hence, using this as a fact, we test the ability of 
our simulated annealing tool to distribute efficiently a mix of multiple HTTP (GET and 
PUT) operations that correspond to digital twin transactions across multiple Kubernetes 
worker nodes resident in a homogeneous Raspberry Pi 4 cluster, before actually 
deploying them on the cluster. 



 

 

 
Fig. 2. Load imbalance for simulated annealing with (x PUT and y GET) operations, 
where (x, y) = (0, 36), (1, 35), (2, 34), (3, 33), (4, 32), (6, 30), (12, 24), and (24, 12).   

Fig. 2 shows small load variations when scheduling different collections of 36 
GET/PUT operations using simulated annealing on a cluster of four identical worker 
nodes; we use parameters: iterations=40, chain_length=10, 
chain_factor=1.1, temperature_decrement=0.7, and all move 
acceptance factors as 0.001. By averaging, for all sets of operations and cluster nodes, 
the absolute difference from an ideal load of 0.25, we compute an average load 
imbalance of 1.75% compared to 11.1% for the multistep kube-scheduler; multistep 
fares well only for symmetric cases. Note that, if we were to reduce iterations=10, 
the average load imbalance would worsen to 5.5%, which is still better than multistep, 
but the tool would be seven times faster (and run in ~10ms). Moreover, if we were to 
scale up to 72 GET/PUT operations (with a similar distribution) and eight identical 
nodes, the simulated annealing tool would be fifteen times slower (and run in  ~0.7sec), 
but its load imbalance would remain smaller than multistep: 2.4% vs 5.4%. 
Next, focusing on the application, we compare the average latency of common DT-like 
operations: Create, Read, Update/insert, and Delete (CRUD) on the Ubuntu server. We 
consider different DBMS under Linux: MongoDB 4.4.6 (NoSQL) [18], MariaDB (SQL) 
[19], InfluxDB (Time Series) [20], and LittleD (limited SQL) [21]. LittleD was 
designed primarily for sensor nodes and embedded devices with extremely limited 
resources [22]; it can perform joins and selections in real-time on 16-bit AVR boards 
with 16 KB ROM for compiled code, 2 KB RAM, and less than 1 MB of stable storage. 
In this work, all testbench clients are in C/C++ under Linux [23]. Moreover, in the 
testbench, 32-bit integers are used (to align with ECG data). The DB sensor record is 
1K, and the latency is averaged over 1K iterations, for a total dataset size of 32 MB. 

As shown in Fig. 3, LittleD is faster for all CRUD operations. Its average latency is one 
to two orders of magnitude faster for most operations. The exceptions are: LittleD insert 



 

 

is only three times faster than MongoDB update, and LittleD read is 5.5 times faster 
than MariaDB read. LittleD’s performance is due to a small parser (limited SQL), query 
translation while parsing, and use of static memory. LittleD supports create/drop table, 
read, insert, delete, select, strings, and date/time, but not advanced functions, such as 
update, join, transactions, triggers, indexes, views, subqueries, and JSON functions. 

Fig. 3. Latency of DT-like CRUD database operations; since LittleD does not support 
update, insert (and delete) are provided for comparison.  

MongoDB is the second fastest database; observe that for large read workloads (e.g., 
burst of 1K operations), MongoDB improves fast and outperforms MariaDB. Due to 
buffering and compression, InfluxDB has low speed (third fastest); however, it also 
improves fast, especially for bulk reads. LittleD also uses the smallest RAM: ~3MB 
compared to ~15MB for the other databases. In terms of CPU load, MongoDB exhibits 
the highest CPU utilization rate for all operations: 28% to 50% compared to 1% to 15% 
for the other databases; it is even higher for bursts (MongoDB quickly spikes to 100%).  

4   Conclusion and Future Work 

We have proposed a simulated annealing tool for scheduling workloads on Kubernetes 
clusters and demonstrated its efficiency on an e-Health digital twin application. The 
tool can be ported as an external policy of the kube-scheduler [11] to map pods to edge 
computing clusters in a fast and scalable way. It can be extended to perform dynamic 
pod reassignment. It is also interesting to adapt the tool towards hard real-time and 
mixed criticality by developing new perturbation policies and cost models. 
Another direction is to compare container-based Kubernetes to a VM-based Nginx-
HAProxy-Keepalived infrastructure. The latter leverages network technologies to 
incrementally build a scalable, resilient webserver ecosystem to support HTTP load 



 

 

balancing and high availability. The solution harnesses Nginx for the webserver, 
HAProxy as the load balancer, and Keepalived for failover, alike Kubernetes replicas. 
Finally, concerning the application, it is essential to extend the open-source LittleD 
database beyond CRUD operations and develop a lightweight, high-performance, low-
cost SQL-based Digital Twin ecosystem targeting small Linux-based systems. 
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