

Simulated Annealing Scheduling on Kubernetes Clusters:
An E-Health Digital Twin Use-Case

Miltos D. Grammatikakis, George Kornaros, and Mateo Fortea

Hellenic Mediterranean University,
71410 Heraklion, Greece

{mdgramma, kornaros}@cs.hmu.gr, mateofortea.info@gmail.com

Abstract. Scheduling multiple containerized tasks to edge computing nodes requires
toolchains that lay out the necessary computational/communication models, algorithms,
and methodology. The proposed toolchain performs stochastic optimization using
simulated annealing (SA) and aims to support automated pod assignment to edge
computing nodes. Different input parameters specify pod computational and
communication requirements and edge nodes performance characteristics, as well as
mapping options and algorithmic characteristics that affect the quality of the solution.
Preliminary results from an eHealth-related digital twin (DT) use-case demonstrate
limited load imbalance when scheduling DT workloads consisting of mixed HTTP
PUT/POST and GET workloads to worker nodes (Raspberry Pi4) of a Kubernetes edge
computing cluster. DT requests support basic create, read, update, and delete (CRUD)
operations for modeling virtual real-time replicas of ECG biosensors within a Linux
server-based open-source Eclipse Ditto DT management system that integrates the
MongoDB database. Finally, we examine database server performance for simple DT-
like CRUD operations on a Linux server. Results indicate that LittleD, a lightweight,
low-cost, limited SQL-based database, designed initially for small systems, offers a much
smaller average latency than MongoDB (used in Eclipse Ditto), InfluxDB, or MariaDB.

Keywords: Container, digital twin, Kubernetes, load balance, pod, simulated annealing.

1 Introduction

IoT applications utilizing cloud resources often suffer from high latency and low
network bandwidth. A solution uses hierarchical network operations, shifting
computations from the cloud to the edge or fog layers. The solution must readily adapt
to manage diverse containerized applications in production environments. Hence, the
concept of Kubernetes has evolved, since its inception in the early 2000s, towards
lightweight, resource-limited, certified distributions, such as K3S by Rancher Labs;
implementations are easy to install, deploy, and manage at the edge [1].
Within this context, the Kubernetes scheduler (kube-scheduler) maps pods across
available worker nodes in the edge computing cluster. Pods represent a group of one or
more containers inside which applications are running; hence, pods are the smallest
schedulable units. Scheduling is usually based on the pods’ resource constraints and
requirements (e.g., CPU and network), and the current resource availability. Hence, the
kube-scheduler assigns newly created pods to a suitable worker node with at least as

many resources, usually with a fast best-fit algorithm. This algorithm performs two
operations in sequence: filtering and scoring. Filtering examines a set of hard
constraints that a node must meet to run a pod. Scoring evaluates worker nodes for pod
placement against a set of resource-related utilization and load-balancing criteria.
Kubernetes separates worker nodes from control. Worker nodes (k3s agents) support:
a) the kubelet runtime environment used for ensuring that containers are healthy, and
for deploying/managing pods and distributed services, and b) kube-proxy for inter-
worker communication (via host subnetting), and external communication to the
control plane (k3s master). The control plane runs the API server for interacting with
the cluster, the kube-scheduler, the kube-controller managers (e.g., for job, node,
endpoint, replication, and account services), and a high availability key-value store
based on etcd used for saving cluster state, configuration, and metadata.
Since the default kube-scheduler is not aware of pod requirements and the architecture
or network topology of worker nodes, it often results in non-optimal pod placement that
violates performance requirements. Hence, since 2019, hundreds of research papers
have focused on extending the current state-of-the-art in Kubernetes scheduling [2-4].
Furthermore, several practical projects proposing components that make smart Pod
placement decisions are supported by the Kubernetes SIG Scheduling Group [5]. Some
of these projects contribute to configuration options that control node selection in the
scheduler, e.g., by performing placement via label, inter-pod node affinity, and anti-
affinity specifications, or using taints/tolerations that provide limits for node sets and
pods. Certain pod-related options might also be useful to express, in an abstract way,
data locality, inter-worker node workload interferences, and deadlines.
In addition to configuration options, the kube-scheduler provides extensions. They
extend from calling an external process via HTTPS to executing custom filtering and
scoring to enabling multiple plugins per pod that operate on the pod queue or
implementing custom scheduling components (or related logic) per pod, usually by
directly modifying the default scheduler’s source code. Recent extensions of the
Kubernetes scheduler (or algorithms tested in simulators) refer to generic scheduling,
multi-objective optimization, AI-based scheduling, and autoscaling-enabled scheduling
for edge-cloud, fog, or cloud-based configurations [2-4]. However, very few state-of-
the-art solutions refer to edge computing, where resources are severely limited, and
different challenges apply, such as criticality (soft or hard real-time), performance,
scalability, energy efficiency, and reliability constraints.
On the theoretical side, Oleghe proposes heuristic scheduling based on multi-objective
optimization and graph network modeling concepts for container placement and
migration in edge servers [6]. Wojciechowski et al. use dynamic network measurements
gathered automatically by a dedicated infrastructure layer (implemented via the Istio
Service Mesh) to improve inter-application node bandwidth and response
characteristics [7]. This approach is crucial for the adoption of Kubernetes in 5G
networks. Ogbuachi et al. utilize real-time monitoring from node resources (CPU,
memory, and network load) to improve the performance and fault tolerance of dynamic
orchestration in edge computing applications [8]. Li et al. extend this work by
dynamically managing the disk I/O load of worker nodes [9] using two policies.
Balanced-Disk-IO-Priority (BDI) focuses on I/O balance across nodes, while Balanced-
CPU-Disk-IO-Priority (BCDI) considers CPU and disk I/O load imbalance on a single
node. Finally, Haja et al. developed a custom, open-source Kubernetes scheduler

extension that uses both edge reliability constraints and periodic delay measurements
across different edge nodes [10, 11]; their heuristic is suited for latency-sensitive edge
applications. This is the only scheduler extension available in the open community.
In this work, we develop an open-source simulated annealing tool and demonstrate its
efficiency on dynamic workloads derived from a Digital Twin e-Health use case related
to real-time ECG monitoring from wearable BT biosensors.
Like Ogbuachi’s work [8], our contribution focuses on context-aware scheduling in
edge computing by considering system/network statistics, e.g., CPU and network
metrics. However, unlike Ogbuachi’s work, our implementation is open-source and
considers inter-task synchronization. Moreover, common optimization methods, such
as Newton-Raphson, Simplex, Least-squares, and Multistep (used in default kube-
scheduler and partly in [8]), suffer from the inability to distinguish a local minimum
from a global one since they follow the local gradients; thus, they are useful if the
starting solution is sufficiently close to the global minimum. However, simulated
annealing escapes a local extreme by occasionally moving against the gradient.
While previous scheduling work uses web server or HPC testbenches, our experimental
use case demonstrates the efficiency of our scheduling tool using a digital twin of real-
time ECG monitoring using Eclipse Ditto with MongoDB. In this context, our work
also examines the effect of using basic CRUD operations on different databases,
demonstrating the performance of LittleD (limited SQL) over MongoDB (NoSQL, used
with Eclipse Ditto), InfluxDB (Time Series), and MariaDB (SQL). Our LittleD
comparisons extend the work of Arnst et al. [12], who compared MongoDB, InfluxDB,
and MariaDB on storage/retrieval of highly recurrent IoT sensor data. Based on read-
and-write performance, resource consumption, and qualitative software complexity
metrics, Arnst et al. endorsed InfluxDB as a more suitable DBMS.
Section 2 discusses the architecture of the software tool. Section 3 focuses on analyzing
the effectiveness of the mapping tool. It discusses the experimental framework and the
digital twin use case. Finally, Section 4 provides a summary and discusses future work.

2 Simulated Annealing Tool

The pod assignment tool inputs: a) a task graph specifying the pods’ structure, including
the constituent components, their properties, and their relations, and b) a graph
modeling the target cluster. Hence, the simulated annealing tool uses the following
input parameters for dynamic workload management and resource allocation.
 The task graph specifies computation and (inter-pod) communication requirements

for each pod, using a) the number of pods, b) the expected computation load of
each pod, e.g., in cycles, c) an affinity flag per pod (-1 if the pod is not fixed to any
node, or positive if the pod is fixed to a given node or groups of nodes), d) a matrix
providing the communication and synchronization cost among corresponding pairs
of pods, e.g., in bytes.

 The target cluster model considers worker node properties, including a) the number
of nodes, b) the node type (indexing a hardware file arch), c) the number of
communication links per node, and d) a matrix describing the link types for each
connected node (also indexing arch). The file arch provides for each node, the

node bandwidth, e.g., in cycles per second, and communication link properties,
including send/receive startup time, and maximum link bandwidth, e.g., in bytes/s.

With N nodes and M pods, the total input data amounts to at least O(max{M2, N2})
elements (with matrix representation), but it can be much less for symmetric pods or
node configurations when using an adjacency-list graph representation.
The algorithm optimizes pod assignment to nodes by first calling function
random_solution()to randomly assign pods to nodes, considering any type of
pod affinity (or anti-affinity) properties. Using this preliminary assignment, the tool
predicts the total execution delay (our cost model), which considers each pod’s
computation and communication/synchronization requirements.
Then, the algorithm calls the function set_starting_temp() to compute a
starting temperature. It does so by performing ten random moves from ten different
initial configurations. The starting temperature is set to ten times the (absolute) average
change in cost so that large variations are initially possible.
Then, the algorithm repeats the main annealing loop, until reaching a maximum
allowable cost, tool execution time, or maximum number of iterations; another
possibility is to compare the actual percent change in cost per minute to the expected
percent change. Within this annealing loop, another independent chain loop repeatedly
calls function perturb() to randomly reassign pods to nodes, rerouting
communication traffic based on the new mappings until either the percentage of
accepted moves or the percentage of improved moves becomes too low, i.e., below the
user-defined thresholds. This random perturbation of elements in the existing solution
gives a chance for the algorithm to find a better solution, i.e., with a shorter execution
time. Perturbation invokes one of three functions in a random, but consistent manner.
 Function alter_mapping() alters the assignment of pods by choosing a pod

at random and assigning it to a random node. This process is repeated until
satisfying basic constraints, e.g., the maximum number of node hops allowed for a
message to travel.

 Function alter_path() provides a new set of random communication paths.
Paths are not altered if the maximum number of node hops is one, which indicates
that the network is fully connected.

 Function alter_prio_order() selects two pods (assuming they have the
same priority) and interchanges their order.

After calling perturb() within an inner chain loop, a) the starting temperature for
the next annealing loop iteration is increased if the specified minimum fraction of
accepted/improved moves is not obtained, or else b) the current temperature is
decreased by a user-defined temperature_decrement factor. At the end of the
chain loop, the chain_length for the next chain run increases by a pre-selected
chain_factor. The minimal cost function encountered over all runs is retained.

3 Digital Twin Use-Case: Scheduling and Database Considerations

The experimental setup for testing the scheduling tool is based on the concept of Digital
Twin (DT) [13] [14][15]. DT provides digital replicas of physical devices, processes,
or systems that perform real-time monitoring of sensors, analysis, and decision-making.

DTs are used in IoT and Industry 4.0 for predicting performance and wear-out effects
based on historical sensor data. In e-Health, they are used for monitoring or diagnosis.
In our use case, we have developed a DT representing an STMicro BGW single-lead
biosensor operating at 128 or 256 ECG pulses/s with 12-bit precision. The embedded
prototype consists of an open-source server that stores the sensors' DT [16] [17]. The
server is a Dell PowerEdge T330 with 32GB RAM and 4 HDD drives, running Ubuntu
22.04.2 LTS and Eclipse Ditto 3.3.0 from [17]. Eclipse Ditto integrates the Mongo-DB
database, a non-SQL, document database that stores DT data as a hierarchy of key-
value pairs. MongoDB [18] provides a rich query language with a wide range of DT
operations, such as create, read, update, delete, and search using either Web Sockets,
or HTTP PUT/POST, GET, DELETE, and FIND calls. Connectivity from each BT-
based, BGW biosensor to the server requires a BT-to-Ethernet driver running on a
Raspberry Pi 4 device connected to a 2.1 Gbit/s TP-Link Archer C5400 router. A typical
JSON key-value pair of the BGW DT includes access control, attributes (manufacturer,
gateway info), features (BGW details), and properties (ECG array, date/time, and rate).

Fig.1 Performance of DT operations: PUT vs. GET.

Experiments on a custom Kubernetes (k3s) cluster with 3 to 5 Raspberry Pi 4 nodes
(one K3S server and two to four K3S worker nodes) reveal the relative cost of DT
operations. For example, as shown in Fig. 1, GET achieves a much higher rate (up to 8
times more for low rates) than PUT. Hence, using this as a fact, we test the ability of
our simulated annealing tool to distribute efficiently a mix of multiple HTTP (GET and
PUT) operations that correspond to digital twin transactions across multiple Kubernetes
worker nodes resident in a homogeneous Raspberry Pi 4 cluster, before actually
deploying them on the cluster.

Fig. 2. Load imbalance for simulated annealing with (x PUT and y GET) operations,
where (x, y) = (0, 36), (1, 35), (2, 34), (3, 33), (4, 32), (6, 30), (12, 24), and (24, 12).

Fig. 2 shows small load variations when scheduling different collections of 36
GET/PUT operations using simulated annealing on a cluster of four identical worker
nodes; we use parameters: iterations=40, chain_length=10,
chain_factor=1.1, temperature_decrement=0.7, and all move
acceptance factors as 0.001. By averaging, for all sets of operations and cluster nodes,
the absolute difference from an ideal load of 0.25, we compute an average load
imbalance of 1.75% compared to 11.1% for the multistep kube-scheduler; multistep
fares well only for symmetric cases. Note that, if we were to reduce iterations=10,
the average load imbalance would worsen to 5.5%, which is still better than multistep,
but the tool would be seven times faster (and run in ~10ms). Moreover, if we were to
scale up to 72 GET/PUT operations (with a similar distribution) and eight identical
nodes, the simulated annealing tool would be fifteen times slower (and run in ~0.7sec),
but its load imbalance would remain smaller than multistep: 2.4% vs 5.4%.
Next, focusing on the application, we compare the average latency of common DT-like
operations: Create, Read, Update/insert, and Delete (CRUD) on the Ubuntu server. We
consider different DBMS under Linux: MongoDB 4.4.6 (NoSQL) [18], MariaDB (SQL)
[19], InfluxDB (Time Series) [20], and LittleD (limited SQL) [21]. LittleD was
designed primarily for sensor nodes and embedded devices with extremely limited
resources [22]; it can perform joins and selections in real-time on 16-bit AVR boards
with 16 KB ROM for compiled code, 2 KB RAM, and less than 1 MB of stable storage.
In this work, all testbench clients are in C/C++ under Linux [23]. Moreover, in the
testbench, 32-bit integers are used (to align with ECG data). The DB sensor record is
1K, and the latency is averaged over 1K iterations, for a total dataset size of 32 MB.

As shown in Fig. 3, LittleD is faster for all CRUD operations. Its average latency is one
to two orders of magnitude faster for most operations. The exceptions are: LittleD insert

is only three times faster than MongoDB update, and LittleD read is 5.5 times faster
than MariaDB read. LittleD’s performance is due to a small parser (limited SQL), query
translation while parsing, and use of static memory. LittleD supports create/drop table,
read, insert, delete, select, strings, and date/time, but not advanced functions, such as
update, join, transactions, triggers, indexes, views, subqueries, and JSON functions.

Fig. 3. Latency of DT-like CRUD database operations; since LittleD does not support
update, insert (and delete) are provided for comparison.

MongoDB is the second fastest database; observe that for large read workloads (e.g.,
burst of 1K operations), MongoDB improves fast and outperforms MariaDB. Due to
buffering and compression, InfluxDB has low speed (third fastest); however, it also
improves fast, especially for bulk reads. LittleD also uses the smallest RAM: ~3MB
compared to ~15MB for the other databases. In terms of CPU load, MongoDB exhibits
the highest CPU utilization rate for all operations: 28% to 50% compared to 1% to 15%
for the other databases; it is even higher for bursts (MongoDB quickly spikes to 100%).

4 Conclusion and Future Work

We have proposed a simulated annealing tool for scheduling workloads on Kubernetes
clusters and demonstrated its efficiency on an e-Health digital twin application. The
tool can be ported as an external policy of the kube-scheduler [11] to map pods to edge
computing clusters in a fast and scalable way. It can be extended to perform dynamic
pod reassignment. It is also interesting to adapt the tool towards hard real-time and
mixed criticality by developing new perturbation policies and cost models.
Another direction is to compare container-based Kubernetes to a VM-based Nginx-
HAProxy-Keepalived infrastructure. The latter leverages network technologies to
incrementally build a scalable, resilient webserver ecosystem to support HTTP load

balancing and high availability. The solution harnesses Nginx for the webserver,
HAProxy as the load balancer, and Keepalived for failover, alike Kubernetes replicas.
Finally, concerning the application, it is essential to extend the open-source LittleD
database beyond CRUD operations and develop a lightweight, high-performance, low-
cost SQL-based Digital Twin ecosystem targeting small Linux-based systems.

Acknowledgments. This work was supported in part by the EU H2020 Project
FLUIDOS under GA No. 101070473.

References
1. H. Koziolek and N. Eskandani. “Lightweight Kube distributions: a performance comparison

of MicroK8s, k3s, k0s, and Microshift,” in Proc. Int. Conf. Perf. Engin., 2023, pp. 17—29.
2. Senjab, K., Abbas, S., Ahmed, N., et al. “A survey of Kubernetes scheduling algorithms,”

J. Cloud Comput., 12, 87 (2023), pp. 1—26.
3. Rejiba Z., and Chamanara J., "Custom scheduling in Kubernetes: a survey on common

problems and solution approaches," ACM Comput. Surv., 55-7, 151, 2023, pp. 1—37.
4. Carrión C., “Kubernetes scheduling: taxonomy, ongoing issues and challenges,” ACM

Comput. Surv., 55(7), 2022, Article 138, pp. 1–37
5. Scheduling SIG, https://github.com/kubernetes/community/tree/master/sig-scheduling
6. Oleghe O., “Container placement and migration in edge computing: concept and scheduling

models,” IEEE Access, 9, 2021, pp. 68028—68043.
7. Wojciechowski L. K., Opasiak K., and Latusek, J. et al., “NetMARKS: Network metrics-

aware Kubernetes scheduler powered by service mesh,” in Proc. IEEE Conf. Comp. Comm.,
2021, pp. 1—9.

8. Ogbuachi M.C., Gore C., Reale A., et al., “Context-aware K8S scheduler for real-time
distributed 5G edge computing,”, in Proc. Int. Conf. Softw., Telecom & Comp. Netw., 2019,
pp. 1—6.

9. Li D., Wei Y., and Zeng B., “A dynamic I/O sensing scheduling scheme in Kubernetes,” in
Proc. ACM Int. Conf. High Perf. Compilation, Comput. and Comm., 2020, pp 14–19.

10. Haja D., Szalay M., Sonkoly B., et al., “Sharpening Kubernetes for the Edge,” in Proc. ACM
SIGCOMM Conf., 2019, pp. 136–137.

11. Kubernetes Edge Scheduler, https://github.com/davidhaja/kubernetes-edge-scheduler
12. D. Arnst, T. Herpich, V. Plenk, et al., “Comparative evaluation of database read and write

performance in an IoT context,” Int. J. Adv. Internet Tech., 12 (1-2), 2019, pp. 22—38.
13. M.W. Grieves, “Digital twins: past, present, and future. In: N. Crespi, A.T. Drobot, R.

Minerva, (eds) The Digital Twin, Springer, 2023.
14. L. Li, S. Aslam, A. Wileman, et al., “Digital twin in the aerospace industry: A gentle

introduction,” IEEE Access, 10, pp. 9543–9562.
15. L.U. Khan, Z. Han, W. Saad, et al., “Digital twin of wireless systems,” IEEE

Communications Surveys & Tutorials, 2022, pp. 2230–2254.
16. Eclipse Ditto, Documentation: https://eclipse.dev/ditto, and Software Packages:

https://github.com/eclipse-ditto/ditto and https://github.com/eclipse-ditto/dittoexamples
17. S. Ninidakis, M.D. Grammatikakis, G. Kornaros, et al., “Digital Twins for Remote ECG

Monitoring,” in Proc. Int. Conf. Applications in Electronics Pervading Industry,
Environment and Society, Springer, LNEE 1110, 2024, pp. 346—352.

18. MongoDB, https://www.mongodb.com/docs
19. MariaDB, https://mariadb.com/docs
20. InfluxDB, https://docs.influxdata.com
21. LittleD, https://github.com/graemedouglas/LittleD
22. G. Douglas and R. Lawrence, “LittleD: an SQL database for sensor nodes and embedded

applications,” in Proc. Symp. Applied Comput., 2014, pp. 827—832.
23. LittleD database comparisons, https://github.com/mfortea/FS_DB_Project

